Central role of the apical membrane H+-ATPase in electrogenesis and epithelial transport in Malpighian tubules.

نویسندگان

  • K W Beyenbach
  • T L Pannabecker
  • W Nagel
چکیده

The effects of bafilomycin A(1), a blocker of V-type H(+)-ATPases, were investigated in Malpighian tubules of Aedes aegypti. Bafilomycin A(1) reduced rates of transepithelial fluid secretion and the virtual short-circuit current (vI(sc)) with an IC(50) of approximately 5 micromol l(-)(1). As vI(sc) decreased, the electrical resistance increased across the whole epithelium and across the apical membrane, indicating effects on electroconductive pathways. Bafilomycin A(1) had no effect when applied from the tubule lumen, pointing to the relative impermeability of the apical membrane to bafilomycin A(1). Thus, bafilomycin A(1) must take a cytoplasmic route to its blocking site in the proton channel of the H(+)-ATPase located in the apical membrane of principal cells. The inhibitory effects of bafilomycin A(1) were qualitatively similar to those of dinitrophenol in that voltages across the epithelium (V(t)), the basolateral membrane (V(bl)) and the apical membrane (V(a)) depolarized towards zero in parallel. Moreover, V(bl )always tracked V(a), indicating electrical coupling between the two membranes through the shunt. Electrical coupling allows the H(+)-ATPase to energize not only the apical membrane, but also the basolateral membrane. Furthermore, electrical coupling offers a balance between electroconductive entry of cations across the basolateral membrane and extrusion across the apical membrane to support steady-state conditions during transepithelial transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The V-type H(+)-ATPase in Malpighian tubules of Aedes aegypti: localization and activity.

The V-type H(+)-ATPase is thought to provide the driving force for transepithelial electrolyte and fluid secretion in Malpighian tubules. To confirm the presence of this proton pump in Malpighian tubules of the yellow fever mosquito Aedes aegypti, we used several antibodies raised against the V-type H(+)-ATPase of Manduca sexta. Western blot analysis confirmed the presence of the V-type H(+)-AT...

متن کامل

P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti.

This study describes the expression patterns of P-type Na(+)/K(+)-ATPase and V-type H(+)-ATPase in the larval and adult forms of the mosquito Aedes aegypti and provides insight into their relative importance in ion transport function of key osmoregulatory organs. RT-PCR assays indicate that, at the level of the gene, both ATPases are expressed in all of the osmoregulatory tissues of larvae (mid...

متن کامل

Protein kinase A-dependent and -independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti.

Transepithelial ion transport in insect Malpighian tubules is energized by an apical V-ATPase. In hematophagous insects, a blood meal during which the animal ingests huge amounts of salt and water stimulates transepithelial transport processes linked to V-ATPase activation, but how this is accomplished is still unclear. Here we report that membrane-permeant derivatives of cAMP increase the bafi...

متن کامل

Immunolocalization of the 17 kDa vacuolar H(+)-ATPase subunit c in Heliothis virescens midgut and malpighian tubules with an anti-peptide antibody.

The transmembrane sector of V-ATPases is involved in proton conduction across the membrane where a 15-17 kDa proteolipid forms a putative proton channel. An affinity-purified rabbit polyclonal antibody was developed to an antigenic and putatively extracellular region of a cloned 17 kDa proteolipid. In larval tissue sections, this antibody labeled the midgut goblet cell apical membrane in Heliot...

متن کامل

یافته های تازه درباره سلولهای پاریتال معده

During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 203 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2000